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Abstract

The purpose of this paper is to simultaneously optimize
decision rules for combinations of elementary decisions. As a
result of this approach, rules are found that make more
efficient use of the data than optimizing these decisions
separately. The framework for the approach is derived from
(empirical) Bayes theory. To illustrate the approach, two
elementary decisions (viz. selection and mastery decisions)
are combined into a simple decision network. A linear utility
structure is assumed. l')ecision rules are derived both for
quota—free and quota-restricted selection-mastery decisioas
in case of several subpopulations. An empirical example of

instructional decision making in an individual study system

concludes the paper.
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Introduction

Decision problems in educational and psychological testing
can be classified in many ways. An elegant typology of test—
based decisions has been given in van der Linden (1985,
1988). Each type of decision making in this typology can be
viewed as a specific configuration of three basic elements,
namely a test, a treatment, and a criterion. In general, the
following four different types of decision problems can be
distinguished: selection, mastery, placement, and
classification.

Educational applications of the four types of decision
making can be found in such fields as the admission of
students to schools (selection), pass-fail decisions
(mastery), the aptitude—treatment—interaction paradigm in
instructional psychology (placement), and vocational guidance
situations where most promising schools must be identified
(classification).

In Hambleton and Novick (1973), Huynh (1976, 1977),
Mellenbergh and van der Linden (1981), Novick and Petersen
(1976), Petersen (1976), Petersen and Novick (1976), van der
Linden (1980, 1981, 1987) and Vos (1988), these e¢lementary
décision problems have been studied extensively; these
authors also indicate how - analytically or numerically -
optimal decision rules can be found using (empirical)
Bayesian decision theory.

The four elementary decisions can be met both in their

pure forms or in combinations with each other. The latter is
[}

I
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the case, for instaice, in test-based decision making ir
individualized study systems (ISS's), which can be conceived
of as networks consisting of these various types of decisions
as nodes (Vos & van der Linden, 1987). In such systems
decision making can be viewed as proceeding stvdents through
a network of several of the elementary decisions.

The purpose of this paper is the simultaneous
optimization of combinations of elementary decisions using a
decision—theoretic approach. Compared with separate
optimization of elemer ary decisions, two maia advantages can
be identified. .irst, rules making more efficient use of the
data can be found. Second, utility structures can be made
more realistic. In order to illustrate the approach, in this
paper a selection and a mastery decision will be combined
into a simple decision network, and it will be indicated how
optimal rules for guiding students through such a system can
be derived. The first advantage of the simultaneous approach
is illustrated using this simple system. For instance, when
optimizing acceptance-rejection rules in the combined
decisio.n network, pass—fail decisions to be made later can
already be taken into account {see also Figure 2). The second
advantage will be explained after the utility function for
the combined decision has been specified.

For each elementary decision, one or more of the
following restrictions may apply (van der Linden, 1988):

(1) Multiple populations. The problem of culture-fair
decision making may arise because of the presence of

subpopulations reacting differently to the test items., e.g.

(8]
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for populations defined by race or sex. In such a case, the
test items are often be assumed to be "biased” against some
of the populations.

(2) Quota restrictions. For some treatments, due to shortage

of resources, the number of vacancies are constrained.

(3) Multivariate test data. The decisions are based on data

from a whole test battery instead of a single test.

(4) Multivariate criteria. The success of the treatments is
measured by multiple criteria.

In the present paper, only restrictions will be made
with respect to the presence of subpopulations and the number
of students to be accepted for some treatments. First, the
problem of culture-fair decision making will be considered
for a quota-free selection problem. Next, optimal rules will
be derived for quotae-restricted selection problems using
methcds of constrained optimization. The final section
presents some empirical exemples of optimal cut-off scores
for quota-free as well as quota-restricted selection—mastery
decisions for two subpopulations referred to as the

disadvantaged and the advantaged populations.

Statement of the Froblem

As noted before, a well-known example of combinations of
elementary decisions in education is an individualized
instruction system. Figure 1 shows a flowchart of a system in
which a selection decisior is followed by a treatment, here

an instructional module. Then a mastery decision follows,
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after which a placement decision assigns the students to two
different routes through a module both leading to the same

learning objective. Re2al-life ISS‘'s often have more decision

points.

Insert Figure 1 about here

Selection-mastery decisions may occur in an ISS, for
instance, when decisions on the admission of students to the
system should be made. Then a selection test is administered
before the treatment takes place and students promising
satisfactory results on the criterion are accepted for the
first module of the instructional program (see Figure 2).
Furthermore. let us suppose that the criterion is unreliably
measured, which is not uncommon in ISS's. If success on the
criterion is measured by a threshold value separating
"masters” from “nonmasters”, then, in fact, after the
treatment a mastery decision has to be taken, and the problem
is a selection—mastery decision problem. Students who have
reached the module objectives may proceed with the next
module. However, students who failed are provided with
supplemertal instruction, extra learning time, corrective
feedback, and +he like. These students have to prepare

themselves for a new mastery test.
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Insert Figure 2 about here

In the following, we shall suppose that in the
selection—-mastery decision problem g (g 2 2) subpopulations
reacting differently to the test items can be distinguished.
Furthermore. it is assumed that the observed selection test
score variable X, the observed mastery test score variable Y.
and the true score variable T wunderlying Y, i.e. the
criterion score, assume only continuous values. Formaily, the
presence of populations reacting differently to test items
implies different cut-off scores for each population.
Therefore, let x,j and yoj denote the cut-off scores for
subpopulation i (i = 1,2,....... .g) on the observed test
score variables X and Y, respectively. However, the cut—off
3core to on the criterion score T is assumed to be equal for
each population and is set in advance by the decirion-maker.
The combined decision problem can now be stated as choosing
values of x-; and ycj that, given the value of t., are
optimal in some sense.

In the present paper, linking up with common practice in
criterion-referenced testing, we consider only decisions in
which the decision rules & have a monotone form: students are
admitted to a treatment if their test score is above a
certain cutting point and rejected otherwise. They can be

defined for our example in the following way:

il
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ag for X < Xy

(1) 85(X ., Y) »or X2 x.,. ¥ <y

"
»
-

a, for X 2 X,y Y2 Yeir

where ap., aj. and a; stand for the actions to reject a
student, to retain an accepted student, and to advance an
accepted student, respectively.

An appropriate framework for dealing with decision
problems such as the above is (empirical) Bayesian decision
theory (e.g., DeGroot, 1970; Ferguson, 1967; Keeney & Raiffa,
1976; Lindgren, 1976). Besides the actions, probabilities and
utilities are two other fundamental elements in a Bayesian
procedure. In case of an ISS, a probability model predicts
the outcomes of the several possible routes for the students,
and a utility structure evaluates the outcomes predicted. The
optimal procedure as prescribed by Bayesian decision theory
is to look for a decision rule that maximizes expected
utility.

With respect to the first element, it will be assumed
that for each population i, the probability function
Qi(x,y.t) of the Joint distribution (X,Y,T) is available.
Note that, due to the presence of different pOpula;ions
reacting differently to test items, different probability
functions for each population should be assumed.

Also, the decision-maker may have different utilities
associated with different populations. Hence., in addition to

separate probability distributions, the decision—-maker has to

[
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specify explicitly his/her utility function for each
subpopulation separatoly.

The utility structure dealt with in this paper is a
linear function of the criterion variable T, w> ~h seems to
be a realistic representationr of the utilic:«; actually
incurred in mrmy decision making situations. Ir a recent
study, for instance, it was shown by van der Gaag (1987) that
many empirical utility structures could be approximated by

linear functions.

Monotonicity Conditions

As mentioned before, in a decislon-ther aetic approach,
optimal decision rules are found by optimizing expected
utility. However, the restriction to monotone rules in our
paper is only correct if there are no nonmonotone rules with
higher expected utility. It is here that the notion 2f an
essentially complete class of decision rules comes in handy.
An essentially complete class is defined as a class of
decision rules as good as rules outside this class (e.g.,
Ferguson, 1v67, p.55).

In case of separate elementary decisions, the
monotonicity conditions are known (Ferguson, 1967, sect. 6.1;
Karlin & Rubin, 1956). Iwo conditions have to be met: First
the probability model relating observed test score Z to true
score T should have & monotone likelihood ratio (MLR), i.e.
it is required that for any ty < tj, the likelihood ratio
f(z|t1)/£(z|t2) is a nondecreasing function of z. Second, the

utility function should be monotone; that is, the actions

-y

Qo
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should be ordered such that for each two adjacent actions the
utility functions have at most one intersection point. If
these conditions are met, a monotone solution is said to
exist. It should be noted that for the classification problem
these conditions do not hold without modifications (van der
Linden, 1987).

To guarantee that the monotone rule of the combined
decision problem belongs to an essentially complete class,
the following extra condition (Lehmann, 1959, sect. 3.3)

should hold:

2) For any t3 < %y, the likelihood ratio
k(x,y|t1)/k(x.y|t2) is a nondecreasing function in
each of its arguments; that is, for any tg < t; and
fixed values of Y = yp and X = xg, the
likelihood ratios k(x.yg|tq)/k(x.y0|t2) and
k(xg.y|t1)/k(xp.yY|t2) are nondecreasing functions of

x and y, respectively.

It will be shown below that, in addition to the
conditions of MLR and monotone utility, condition (2) is
sufficient for a monotone solution to exist for the combined

dec’ sion problem. The condition of monotone wutility is

elaborated in the next section.
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Linear Utility Function for a

Selection-Mastery Decision

Generally speaking, a utility function ewaluates the total
consequences of all possible decision outcomes. Formally, it
is a function uyj(t) that describes the utility incurred when
action ay (J = 0,1,2) is taken for the student from
subpopulation i whose true score is t.

Mellenbergh and van der Linden (1981) and van der Linden
and Mellenbergh (1977) use a linear utility function for
determining optimal cutting scores on the separate decisions.
Here, their function is restated for the combined decision
problem as a linear function in T for subpopulation i (see

also Figure 3):

bOi(tc—t) + dgy for X <
3 uji(T) = b, (t—tc) + dyy for £ 2 x4, Y < Yei
by, (t-tc) + dyy for X 2 x ;. Y 2y,

where bgjy, bay > 0.

For each action ay (J = 0.1,2), this function consists
of a constant term and a term proportional to the difference
between the criterion perfcrmance t of a student and the
minimum level of satisfactory criterion performance t.. The
parameters dpj, dy3, and dyj can represent, for example, the
costs of testing or the cost of following an instructional

module. The condition bgj, bzj > 0 is equivalent to the

-

t
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statement that for the rejected students and the accepted
students who passed the mastery test, utility is a strictly
decreasing and increasing function of t, respectively.

It should be noticed that it cannot be said beforehand
whether the utility assc:iated with actior a;, i.e. ujj(t),
is increasing or decrea:’ng, because the utility of the
combined decision depends on the utilities associated with
the selection as well as the mastery decision. Depending on
either the influence of the utility associated with the
acceptance or with the fail dacision is the most important,
ujj(t) is 4n increasing or decreasing function of ¢,
respectively. Figure 3 displays an example of a combined

linear utility function for bj; > O.

Insert Figure 3 about here

In the Introduction, it was remarked that one of the
main advantages of a simultaneous approach was that more
realistic utility structures could be used. Formula 3 nicely
demonstrates how a utility function defined on the ultimate
criterion of the ISS ("master” or “"nonmaster”) can be
properly brought into & previous decision (selection
decision).

Gross and Su (1975) pointed out that 'fair’' selection is

a question of utilities. Whether a selection procedure is

believed to be fair to the various subpopulations which can
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be distinguished depends on the utilities of those involved
in the selection process. From this point of view, the linear
utility model can be used to allow for the fact that the
students might belong to a disadvantaged or advantaged
subpopulation by choosing separate parameter values for the
subpopulations involved. Suppose, for example, that
subpopulation h is considered more advantaged than i. 1In
choosing values of the parameters of the linear utility
function chis can be taken into account by requiring that
incorrect decisions are considered worse for subpopulation i
than for h, while correct decisions are considered more
valuable for i than for h. This amounts to choosing values of
the .lope parameters such that bg; > bgyp and by; > by for
all t. Since bjj > 0 implies that the influence of the
utility associated with the acceptance decision is the most
important, it will hold that bj; > bjy for bjgj. bip > O.
Following the same line of reasoning, it is required that
bgj < byp if byj. by < 0.

The possible actions are supposed to be ordered as ag,
aj;, and a;. Using the fact that, as can be seen from Figure
3, the difference between the utilities change si- n precisely
once, the condition of monotone utility for the utility

function defined by Formula 3 can be expressed as
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(4) uli(t)—uOi(c) = (b11+b01)(t—tc)
+ dli_dOi >0 for ¢t > th.i

Uy (8)—up () = (b, +bg, )(t—t )

+ dli_dOi <0 for ¢t <« th.i'
+ dZi_dli >0 for ¢t > t12.i

U1 (8)mUy 1 (8) = (Byy=byy)(t—t,)

+ dZi—dli <0 for t « °1z.1-

where tj1p 3 and tyjp 5 (tyg9 3 s t12,i) denote the T
coordinates of the intersection of utility line ugj(t) with
upj(t) and upj(t), respectively. Furthermore, it is assumed
that the functions wuj;i(t)-upi(t) and uzi(t)-ugi(t) are
strictly increasing functions of ¢, implying that the slope
parameters (bjj+bpj). (bgij-bq1j) > 0. Using the fact that boji.
bz; > 0, this means that the following condition should hold

for the utility parameter byj:

(6) b21 > b11 . if b11 >0

bOi > —b11 . if b1i < 0.
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Optimal Cutting Scores for Quota-Free Selection

In this section, optimal cutting scores are derived for the
combined decision problem in case of quota—free <election.
That is, we are looking for pairs of cutting scores (xcj.Y¥ci)

such that the overall expected utility is a maximum.

Overall Expected Utility

In maximizing overall expected utility, first the expected
utility of a random student from the ith subpopulation will
be calculated, which, as monotone solutions are looked for,

can be written as

(7) Eluj(T|xo5.Yc1)] = [XC1f® [boi(te—t)+dgylwi(x,t)dtdx +

j* [Ycif= [by j (t—to)+dy ;10 (x,y.t)dtdydx +

I;cil;cilj. [byy (t—to)+dp4 10y (x,y,t)dtdydx,

where wi(x,t) is the joint probability function of X and T in
subpopulation i. Let E;(T|x), qj(x), ki(x,y), and E{(T|x.y)
denote the regression function of the criterion variable T on
X, the probability function of X, the joint probability
function of X and Y, and the regression function of the

criterion variable T on X and Y in subpopulation i,

respectively, then (7) can be written as

i 9
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(8) Eluj(T|xei.¥es)] = I 7, {bgy ite—Ey (T|x)1+dgy }qy (x)dx

+ [7  {lbog+b1] [By (T|x)~tc]
ci

+ dli‘dOi}qi(‘)dx

[ _J [ _J 2 T , -
+ I gey {21 -D11 ) (B (T x. )=t ]

+ dgj—dg4}kj(x,y)dydx,

Now, the decision procedure is viewed as a series of
separate decisions, each of which involves one random
student, and it follows that the overall expected utility is
a weighted average of the expected utilities for the
individual populations. Thus, overall expected utility of the
combined decision problem is:

«Q

(%) E[u(Tlxci'Yci)] =i£1piE[ui(T|xc )1,

i'Yeq

where pj. iglpi =1, is the proportion of students from
subpopulation i in the total population of students.

In quota—free selection there is no restriction as to
the number of students that can be accepted for the
treatment. therefore, Formula 9 is m.ximized if the expected
utility of a random student is maximized. This is done by
méximizing Formula 9 for each subpopulation separately.

The maximum of E;[u(T|X.j.Ye+)) now depends only on the
second and third term in the .ght-hand side of (8), because
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the first term is independent of x.; and y.j. Using a result
from decision theory (see e.g., Chuang. Chen, & Novick, 1981)
stating that for any prior distribution of t, E[u(T|z)] is a
nondecreasing function of z if f(z|t) has MLR and u(t) is a
nondecreasing function of t, and assuming monotonocity
condition (2), it follows from (5) that Ej [up;(t)—uj;(t)|x,y]
= [bps~by;]1[E;(T|x,y)-t 1+d;—d;; is a nondecreasing function
in each of its arguments. Since (bzj-byi) > 0, this implies
that —3 Ei(T|x,y) and -E-Ei(Tlx.y) > 0. Similarly, using (4)
instegz of (5), it follows that Ejlujj(t)-ugi(t)|x] =
[by+boi1 [Ef(T|X)~t ]+dg5—dpy is a nondegreasing function of

x, implying that, since (bjj+bgi) > O, = Ej(T|x) > 0. Using

qij(x), kj(x,y) 2 0, it follows now that the sign of the sum

of the second and third term changes only once from negative
to positive, and, therefore, E[uj(T|xci.Yci)) will reach its

maximum for one pair of cutting scores (xcj.Yci)-

Maximizing Expected Utility for a Random Student

Necessary conditions for the optimal values of the cutting
scores, say x'cj and y'cj, optimizing the expected utility
for a random student from subpopulation i, Ej[u(T|xcj.Yci)l.
can be obtairad by differentiating Ej(u(T|xcj.¥ci)] with
respect to x.j and ycj. setting the resulting expressions
equal to zero, and solving simultaneously for xc; and ycj-

Using the property that for any bivariate distribution

f(x,y). it holds that
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a ® ¢S a [ J
= Ix I~ f(x.y)dydx = - = Ix I’; f(x,y)dydx = f; f(x,s)dx.

For the derivative of Ej(u(T|xci.¥Ycj)] with respect to yqy

this results in

(10) ﬁa_ Bi tu(T|x,, .7, )] =
ci

= 8y(7 ) [ {Iby;-by N [B((T|x.¥ )t +dy ~dy )
ci

24 (x|yciddx = 0,

where z;(x|ycj) and sj(y) denote the posterior probability
function of X given Y = y.; and the marginal probability
function of Y in subpopulation i, respectively. Since sj(y) 2
0 (the possibility of s;j(y) = 0 will be ignored), it follows
that (10) can be replaced by

(1) 7 {lbyy—by 1B, (Tx, ¥,y )t 14y, —dy , b2, (x|y ddx = 0.
ci

Similarly, differentiating Ej[u(T|xcj.¥Yci)] with respect to
Xci. using qi(x) 2 O (the possibility of qj(x) = 0 will also

be ignored), results in
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(12)  [by,+b, 1 [E (T|x )=t ] +d, ;~dg, +

chi”bzi_bu] (B, (Tlx,y 7)€ 1+d,, 4, }m, (y¥]x,,)dy = O,

with m;(y|xc5) being the posterior probability function of Y
given X = xoj. Now, solviag the system of Equations 11 and 12
for xc3 and Ycj. one obtains the optimal cutting scores x' i

and Y.Ci‘

Linear Regression

For given regression functions and probability density
functions, the optimal quota—free decision strategy is
represented by the system of Equations 11 and 12. If the
monotonicity conditions are not strict or it does not hold
that s;(y) or qj(x) > 0 in the neighborhood of the solution,
the optimal decision strategy may not be unique. Throughout
this paper it will be assumed that conditions like these are
fulfilled.

Since the relations between the test scores and the criterion
(true score) in the regression functions are not directly
observable, psychometric models are needed to estimate these
relations. Possible psychometric models are the linear

regression functions 6;+T'jx and aj+Bix+Tiy for E;(T|x) and

E;(T|x,y), respectively. Since the probability functions of
T given X=x, and T given X=x and Y=y in subpopulation i are
normal (see e.g., Johnson & Kotz, 1970), it follows that they

belong to the exponential family, and, hence, they do possess

D
<o
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the property of MLR and MLR in each of its arguments,
respectively (see e.g., Cauang, Chen, & Nowvick, 1981). 1In
addition ;o the properties 3; Ei(T|x) =Ty, 5§.E1(T|x,y) =
Bi. and — Ei(T|x,y)= Ti > O (see e.g.. Lord & Novick, 1968),

dy
it then follows that the monotonicity conditions are
fulfilled. Assuming linear regression, it can be shown from
classical test theory that the linear regression of T on X is

given by
(13) Ei(T|x) = Ei(Y|x) =My gt pi(cY,ilcx,i)(‘"“x,i)'

Py i+ Mg i Py Oy i and o%.4 being the population means of
Yi and Xi, the population correlation between Xi and Yi'
and the population standard deviations of Y; and Xy,
respectively. From (13), it follows that

(14) I‘i pi(cY.ilcx.i)

= My, 3 ~Tyux ;-

[
1

Furthermore, using results from classical test theory,
it can be shown that the linear regression of T on X and Y

can be written as

(15  EB(T|x.p) =
by.g * Oy 1/0g HPPgy. )/ (1=p ;D)

(x-pg ) + (Pyy. 1P iogy: /(1P Dhg-nyg .

A
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Pyy',i being the reliability coefficient of Yi. From (15), it

follows chnat

2
(16) By = (op /oy (PDyy. 0/ D)
T = (pn..i-pifp“..i)/(l—f’iz)
@y = My By + py (1-T).

All quantities appearing in (14) and (16) can be estimated
straightforward; thus, estimates of the 1linear regression

functions can be calculated.

tion al 1
In order to solve the system of Equations 11 and 12 for Xci
and y.j, the decision-maker must specify the Joint
probability function of X and Y. It is assumed that the
variables X and Y have possibly different bivariate normal
distributions in each subpopulation. Assuming that the X and
Y scores are in their standardized form, this can be written

A7k Cxygyy) =

(20719, 217 exp(—(xy?-2p xyr vy D7 2019 B,
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where xy and yy denote the standardized scores (x-pyx)/ox and
(y—pY)/cY of X and Y, respectively. For the standardized
bivariate normal distribution in (17), the conditional
distribution of Xy given Yy = y, is normal with expected
value PiYy and variance (1—p12). Likewise, the distribution
of YN given XN = Xy is normal with expected value PiXy and
variance (1-p;2).

Substituting a; + B,x + 7,y.; and NPyYy i 1-p2) into
Equation 11 for Ei(T|x.yci) and zi(‘leu.ci)' respectively,
and using the property that the primitive function of xe—¥X'
is equal to —e—%X' it follows that Equation 11 will take the

form

(18)  £(x ..qy) =

{(bgy—by g )(@y+Biby 1+T31Yci*P10X, 1P1YN, c1~bc)*
dpy—djyjloy j{1-2[(xy oi~PiTN, i)/ V(1P 2] }+
(bgy—by4)Byoy, 2V (1-p;2)

QL(xy, ci~P1¥N, c1)/V(1-p;2)] = 0.

where 2([.] and ¢[.] denote the standard normal distribution
function anl the standard normal density, respectively.
Similarly, substituting 0; + Tyxcq, &5 + Bixcy + T4Y.
and N(p,xy .. 1-p 2 into Equation 12 for E(T|x y).
Ei(Tlxci.y). and mi(YNI’N.ci)' respectively, results in

<6
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(19) g(x 4y ¥oy) =
{(bgi+by ) (8,4 yx, -t )+dy =dg;}+{ (byy-byy)
(o +B3 X3 +TiHy, 1+T1P 10y, 4XN, ci~be)+d24~dy )
(BTN, o5—P XN 1)/ V(1P 2)])+(by—by )
Tiog, 1 VAP QLYY 4P Xy o)/ V(1P 2)] = 0.

The system of Equations 18 and 19 cannot be solved
analytically for x,; and y.j, but it can be solved
iteratively using Newton's method for systems of nonlinear
equations (see., e.g., Ortega & Rheinholdt, 1970). Updated
estimates X'cj, 341 and y'cj, j41 after iteration j+1 are

obtained using the following formulas:

(20) x'ci,j+l = x'ci,j - [(£ ra g-—-g %— £)/3(£.9)]
ci ci

Y'Ci.j - [(g éri f - f %i g)/J(f.g)].
[ [

Y'ci,j+1

d d d d
where J(f.g) = e £ > g - o g 3y f represents the

Jacobian of the fﬁximtions f(xci.Yci) and g(xcj.¥ei). It is
recommended that the cut—off score t; on the true score scale
T is used as a first approximation to x'j and y'qy.

In order to solve the nonlire.. system of Equations 18
and 19 via the iterative procedure given in (20), the partial
derivatives of f(xcj,Yci) and g(xoji.Yci) are needed. They are

given as
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d
(21) xzf(xci, Ci) =

~VAp, D1 ol xy P Ty )/ V1P D]

{(bgy—hq ) +B X i +T Vo q~t)+d5—dy4).

(22) E{ f(xci 'YCi) =
(bpj-byj)ox i/0y 1{(T40y 1+B;P10% 1)

(1-8[(xy o4~PyTy ci)/T(1P2)])+

P/ V(1= 2)101(xy i ¥y, i)/ Y1 2)]

(0 +B X i +T Voy—tc) 1+(dg =dy )P4/ [V(1-p2)]
og, 191Xy csPyIN, cs)/ V1P D)1 /0y ;.

d
(23) ag(xci, Ci) =

(Dpy+by 4 )T+
‘bzi‘b11)’°x,1"Bi°x,1*71“Y,191)

(1-2[(Ty oiP Xy, 1) /(1P ;2)])+

P/ IV ) 1QU(Yy P XN, 1)/ V(1-P 2))

(o +B X0 #T Vo y=tc) 1+(dgy=dq )P4/ [V(1—p32)]
QLYY ci—PiXN, i)/ V(19D /0y 4.

24) >

94 g(x, Yoy =

~ V(121791 (yy P XN, c1)/ V(1P 12)]
{(bgy—by ) (4B X0 +T ¥ b ) +dp—dy3} /0y 4.
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An interesting special case of ‘the combined 1linear
utility function arises when dp; = djj = dpy. In that case,
all utility parameters dy; () = 0.1,2) vanish from Equations
18 and 19. In other word,. if the amount of constant utility,
dyj., for each action is equal, then there is no need to
choose values for dji in determining the optimal cuttiag
scores x'c; and y'y.

It can be shown (Lord & Novick, 1968, sect. 17.2) that
the standard normal distributions appearing in (18)—(24) are
almost interchangeable with logistic functions for a scale
parameter equal to 1.7. The logistic model will be preferred
in the iterative procedure because it is easier to work with
mathematically than the standard normal model. Usiug this
approaimation, we may rewrite the standard normal

distributions as follows:

Bl(xy, s PN, /TP D] =
[1+°‘P“1-7(‘N.ci‘Pin,ci’/{(l'piz’}]'1'

BTy ciP Xy, o) /(1] =
[1+°‘p('l'7(YN.ci'pixN.ci)/{(i'piz)}]—1'

The iterative procedure is implemented in a computer program

called NEWTON.

<9
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Special Solutions

The optimal solution for the separate mastery and selection
decision can oth easily be derived from Equations 11 and 12
by imposing certain restrictions on Xci and  ygj,
respectively.

First, putting x4 = —» in Equation 11, that is
accepting all students., and using L: z2i(x|yci)dx = 1,
Equation 11 will take the form

(25) (b2i—b11]1 [B4(T|yci)-tcl+dzi—dg4 = O.

Putting both utility lines uyi(t) and uzi(t) in Formula 3
equal to each other, it appears that the t coordinate of the
intersection, tg3 i, is equal to tet(dj—dag)/(bai-byy).
which implies (25) can be replaced by Ej(T|yei) = t12,41. This
solution yields the same optimal cutting score Y'ci as the
one given by van der Linden and Mellenbergh (1977) for the
separate mastery decision. Analogous to the combined decision
problem, a psychometric model is needed to specify the
regression function E;j(T|y.j). For this purpose, the
classical test model with linear regression (Lord & Novick,
1968, p.55) will be assumed, which is known as Kelley's

regression line:

(28)  E{(T|¥gy) = Pyy: 3¥cy + UPyy. My 4

Substituting (26) into (25), gives
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(27)  ¥'ci = BY,1 + {tcwy, i+ "13-d24)/(P2i-b11)}M/pyYY: i

Analogous to the derivation of the optima! separate
mastery decisiorn from (11), the optimal separate selection
decision can be derived from (12) by putting yoj = —e, that
is, advancing all accepted students. Doing so, and using

Formuzla 3, it follows that
(28) Ej(T|xci) = to2,1 = tc + (dpj—d23)/(bpji+b2i).

where tpy j denotes the t coordinate of the intersection of
utility line ugj;(t) with up;(t). Also, this optimal solution
is the same as the one reached by Mellenbergh and van der
Linden (1981) for the separate selection decision. Adopting
the linear regression function from classical test theory
again, it follows from (28) that the optimal cutting score

x'ci can be expressed in closed form as

(29) x'ci = Mg, i + {Sc—Hx,i+(dpj—d24)/(boi+b21) }/Pxx’ 4.

where pxx: i denotes the reliability coefficient of Xj.
An interesting case arises when di; = dp; in Equation
27. Whenever this occurs, both utility lines ujpj(t) and

upi(t) intersect at t., and thus, Equation 27 takes the form

(30) Yei = MY,i + (tc¥y, 1)/PYY’ 4-




Simultaneous Optimization
27

In other words, if the rmounts of constant utility associated
with the actions retaining and advancing a student in the
separate mastery decision are equal or there are no constant
utilities at all, then there is no need to assess the
parameters bjj and by;. In the numerical example, this
situation will be further elaborated.

Similarly, all utility function parameters vanish from
(29) whenever dgj = dpi: thus, (29) can be further simplified

to

(31) xX'ci = ux,i + (te—bx, 1)/PxX’ ,i-

Optimal Cutting Scores

for Quota—Restricted Selection

In quota-restricted selection only a fixed number of students
can be accepted for the instructional program. The selection

constraint can be expressed as
J g
(32) po z pi[Prob(X 2 xci)] = Elpi [I % (x)dx]),

where 0 < pg < % pPj = 1 represents the fixed proportion of
all students ti:t can be accepted.

The values of x'cy and y'cj optimizing the overall
expected utility of the combined decision problem, can now be

found by introducing the selection constraint into the
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function to be optimized (Equation 9) through a Lagrange
multiplier A:

g
(33) L(Xo Yoy oM =i£1piE[ui(T|xci.yci)]

g -
+ Mpo-ﬁlpi[f r Ja(0AI},

where A is a constant.
Differentiating L(Xcj.Ycj.A) with respect to yci and
Xcj. Setting the resulting expressions equal to zero, and

using p; > 0, vields

(34) % E(ui(T|xci.yci)] = O,
ci

(35) ;i—- E[ui(Tlxci' ci)] + Aqi(xci) = 0.
ci

As can be noticed from Equation 10, the solution to Equation
34 is the same as the solution for the case of quota—free
selection given by Equation 18.

The first term in the left-hand side of Equation 35
represents the derivative of the expected utility of a random
student with respect to xcj in the unrestricted situation

(Equation 12). Substituting this partial derivative into

Equat;ion 35, and using qj(x) 2 0, it follows that
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(36) [boi+b13) [Ej(T|xci)-tc)+dgj—doi—> +
[ _J
IY i([bZi—bli][Ei(T|xci.y)—tc]+d21—d11)mi(y|xci)dy = 0.
c
Inserting the expressions for the linear regression functions
and N(p;xy ;. 1-9;2) for m(yylxy .4). and integrating
Equation 36, results in

(37)  h(xy.¥.) =
{(bgy+by 1) (8, +T Xt )+d; ;—dg;~A}+{(bg;~by )
(g +BiXoi+TiMy, 1+TiP10Y, XN, ci~be)+d21—dy )
(1-2[(Yy, ci—P1EN, 1)/ V(1P 2)1)+(by by )
T30y, 1V(1-P;2)QU(TY P XN 1)/ V(19 2)] = 0.

Since it has been assumed that the Joint distribution of X
and Y is a possibly different bivariate normal distribution
in each population, it follows that qj(x) is a normal
distribution with mean py ; and variance cx.iz (see, e.g.,
Johnson & Kotz, 1972). Hence., the restriction of Equation 32

can be written as

g
z

(38) V(Xc1.Xg2s - -+ 1 Xog) =i

1p1(1¥§[xu.ci]) -po = 0.

Now, the solution for the quota-restricted selection model is

found by solving the system of Equations 18, 37, and 38 for
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the (2g + 1) unknown parameters x.j. Yci. and A. Note that
with quota-restricted selection, unlike quota-free selection,
the optimal cutting scores x'cj and y'cy (i = 1,...,9) are
dependent upon each other.

In order to apply Newton's iterative method to solve the
given system of nonlinear Equations, the partial derivatives

are required again. From (37) and (19), it can easily be
d d

vaerified that ?{ h(xCioYCi) = a EE g(xCioYCi) ’
el h(xci.Yci) = 3§Er-g(xci.Yci). and = h(xci,¥ci) = -1.

The derivatives of f(xci.yci) and g(xci.yci) with respect to
xcy @and y.y were given in Equations 21 until 24,
respectively. Furthermore, it follows from (38) that

d
(39 5;:; V(xél’xEZ"""xég) = (—pilok.i)v[xN,ci]'

Analogous to the quota—free selection model, =2s can
easily be seen from Equations 18, 37, and 38, no values for
the utility function parameters dy; (J = 0,1,2) have to be
specified when the amount of constant utility for each action
is equal.

A computer program called LAGRANGE has been written to
obtain an optimal decision rule. In the program, the optimal
solution (x'¢3.¥'cy) ©f the quota—free selection model can be

used as a first approximation in the iterative procedure. A

numerical example illustrating the procedure is given in the

next section.
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A Numerical Example

The linear wutility model for optimal selection-mastery
decisionus was applied to a sample of 43 freshmen in medicine.
Both the selection and mastery tests consisted of 17 free-—
response jitems on elementary medical knowledge with test
scores ranging from 0-100. The treatment consisted of a
computer—aided instructional (CAI) program.

Due to prior knowledge, the total population of 43
students could be distinguished with respect to elementary
medical knowledge into a disadvantaged and an advantaged
subpopulation of 27 and 16 students, respectively. Let the
disadvantaged and advantaged population be referred to as
subpopulation 1 and 2, respectively. The normal models
assumed for the distributions X; and Y; showed a satisfactory
fit to the test data for a Kolmogorov-Smirnov goodness—of—fit
test with p-values of 0.869, 0.934, 0.867. and 0.993 for X,
Yy, X3. and Y3, respectively. The differences between the
theoretical and observed cumulative distribution functions
were 0.0686, 0.1035, 0.1495, and 0.1067, respectively.

The teachers of the course considered students as having
mastered the subject matter if their test scores were at
least 55. Therefore, t. was fixed at 55.

The means, standard deviations and correlation between X
and Y, were computed for each subpopulation using the maximum
likelihood estimates. Furthermore, the reliabilities of the

test scores were computed as coefficient a (Crombach, 1951)

Ly
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for each subpopulation. The results of these computations are

shown in Table 1.

Insert Table 1 about here

First, the quota—free situation is considered. Since
population 2 was considered more advantaged than 1, it should
hold that bpy > bpz. by > bz, byy > byz for by, by > 0,
and bjj < bjp for byy. bjz < 0. Besides these conditions for
the utility parameters in Formula 3, condition (6) should
hold for the utility parameters by; (J = 0,1,2; i = 1,2).
Substituting the wvalues of the statistics of Table 1 into
Equations 14 and 16, and using the computer program NEWTON,
Equations 18 and 19 weve then solved for x.j and yoy (i =
1,2) with t, as starting values. To illustrate the dependence
of the results on the utility structure, optimal cutting
scores were computed for 10 different values of the utility
parameters by; and dy; () = 0,1,2; i = 1,2). The absolute
values of byj and dy; for utility function 1 until § were the
same as the absolute values for utility function 6 until 10.
However, the sign of by; was taken negative in the last five
ruas, taking into account the fact that the sign of bj; could

not be specified beforehand. The results are reported in
Table 2. ’
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Insert Table 2 about here

As can be seen from Table 2, the consequence of increasing
the parameters bpj; and bp; (i = 1,2) is a decrease of the
cutting scores. Furthermore, inspection of Table 2 shows that
a decrease of the amount of constant utility, dy3 (J = 0,1,2;
i =1,2), implies that the cutting scores have to be raised.

Finally, it can be seen that for the simultaneous
solution the optimal selection scores are lower for the
disadvantaged than for the advantaged group. Conversely, the
optimal mastery scores are lower for the advantaged group.
This is an important conclusion, which can be argued by the
fact that the disadvantaged students should be accepted
sooner. On the other hand, however, they should stay longer
in the treatment to be sure that they have mastered the
instructional unit sufficiently so that they may proceed with
the next unit.

Using Equations 27 and 29, the optimal cutting scores
were also computed for the separate mastery and selection
decisions. Since no constant amounts of utility were assumed
for utility functions 2 and 7, Equations 30 and 31 were used
to compute the optimal cutting scores for these two utility
specifications. The results are also reported in Table 2.
Tab}e 2 shows that the optimal selection as well as the
optimal mastery scores in the separate model have been raised

compared to those in the combined m-del.

s
ot
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To give an impression of the gain in overall expected
utility by using the simultaneous approach, the ratio of
overall expected utility for the separate and simultaneous
solution has been calculated. The overall expected utilities
have been calculated by substituting the optimal cutting
scores from Table 2 into Equation 8. The third term in the
right-hand side of (8) has been computed by using numerical
integration methods, while the first and second term have

been integrated analytically yielding respectively

boj(tc~03-Tiuy, 1)+do;.

{(bpi+b11)(81+T uy, j—tc)+dgj—dos}
{1-#[xy, c1)}+0x, 1T1(Dpy+by)Qlxy 1.

The computer program UTILITY calculates the overall expected
utility; the results are displayed in Table 2.

Finally, the quota-restricted situation is considered.
The proportions p; (i = 1,2) of the student population
belonging to each subpopulation were set estimated as n;/n,
where n represents the total sample gize and nj represents
the number of students in the sample in subpopulation i. The
proportion pg of the total student population that could be
accepted for the instructional treatment was arbitrarily set
equal to 0.333. Using the computer program LAGRANGE, the
system of Equations 18, 37, and 38 were then solved for x.j

and yci (1 = 1,2) with the optimal solution of the quota-free
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situation as starting values. The optimal cutting scores were
computed again for 10 different values of by; and dyi; the

results are shown in Table 3.

Insert Table 3 about here

From Teble 3 it can be seen that the optimal selection
scores x'cq and x’'.2 in the quota-restricted model have to be
raised compared to those in the quota—free model. This result
is in accordance with our expectations, because fewer
students can be accepted in the restricted situation. Also,
it follows from Table 3 that the optimal mastery scores y'cj
and y’'op are higher than for the quota—free model.

Finally, it can be noticed that, analogous to the quota—
free situation, the optimal selection and mastery scores are

lower and higher for the disadvantaged than for the

advantaged group, respectively.
Discussion

In this paper an approach to instructional decision making
for combinations of elementary decisions has been presented.
A useful application of simultaneous decision making can be
found in the area of instructional decision making in ISS's.
As an example, two elementary decisions (viz. a selection and

a mastery decision) were combined into a simple ISS to

40
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indicate how by simultaneous optimization of such networks,
'optimal rules for proceeding students through ISS's can be
designed within a Bayesian decision-theoretic framework. The
utility structure adopted in this combined decision problem
was a linear utility function.

Further examination of the "best” way to represent more
complicated instructional networks of combinations of
elamontary decisions seems a valuable line of research. Such
instructional networks can also e for .alized with the aid of
Bayesian statistics and optimal rules for these simultaneous
optimization problems can be found.

Also, more efforts are needed to examine other more
realistic forms utility functions might take in certain
educational applications. For example, the normal ogive
utility function (Novick & Lindley, 1978) which takes utilicy
to be a nonlinear func:ion of the true score. Such a utility
structure might be adopted, for instance, when it is
reasonable to assume a leveling-off effect.

Finally, an interesting line of research seems to be to
design "optimal CAI-netw..rks" using the method of simulation.
On the basis of the derived theoreticai optimal decision
rules, then, for a simulated distribution of students, it can

be determined in which instructional network the shortest

time is spent to reach a certain final mastery level.
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Author'’'s Note

Portions of this paper were presented at the European Meeting
of the Psychometr.c Society, 1987, Enschede, The Netherlands.
The author is indebted to Wim J. van der Linden for his
valuable comments on earlier drafts of the paper and to Jaxn
Sulmans for providing the data for the empirical example.

The computer programs NEWION, LAGRAY ™ and UTILITY are

available on request from the author.
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Table 1
Statistics Selection and Mastery Tests (X agd Y)
Statistic Disadvantaged Advantaged

X Y X Y e
Mean 50.875 62.626 56.453 67.148
Standard Deviation 10.981 11.445 11.674 13.344
Reliability 0.762 0.775 0.783 0.813
Correlation 0.8564 0.8685

|
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byy=—2 dyq=0 byg=1.5 dy220 Xo1=41.95 x.9=43.06 Xc1=56.29 x.9=54.60 36.3¢  67.35

byj=3  dgj=0 by3=2.5 dgge0 Yc1=40.52 y.2=38.51 Yc1=52.78 y.2=52.21

(8) bpy=3.5 dgy=-3 bgz=3 dgz=-3
bi1=2 dyg=7  byge-1.5 dyge-7 Xc1743.57 Xo2e44.87  x.1258.10 xoges6.69 8.86 47.51

B1=3  dg1=12 byged.5 dgge12 TE1"41.97 ¥c3m40.22  yoyu54.07 yoges3.?s

9 -2 . -2

@ :""5 :‘" :°3'° 5 :03 Xo1742.13 2:3243.16  xoqw56.53 xoge54.90
123 Qs biged diges  e1nl-l 38.73 52.92 5 0.39  71.28
b:lté dzl.-‘ b:zns dzz.-‘ Te1 " Yo3=38. Yc1=34. Yca® 3.39

=15
ao :"‘ 1, :‘“g :"3::; :03:3 Xc1742.22 2:2%42.79  x.1=56.39 xogeS4.71
11 11 12 12 40.63 38.79 52.88 5 36.63 6475
b21=10 day=—q4  baa=9 dyge—4g Yc1740. Yc2=38. Yc1=54. ¥c2=52.32

*100

27.16 68.90

5.57 55.235
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Cutting Scores (x'cy.7 cp)

Disadyriitaneopy

byy=2 dyy=3 bya=1.5 dyz=-3 Xo1=56.48 Xages9.34

bzy=3 day=—4 bag=2.5 daz=—4 Yci=42.54 Yoz=47.31
(2) Dbpy=3.5 doy=0 bgz=3 dgg=0

byy=2 dyy=0 byg=1.§ a,;.o Xq=56.48 Xeg=59.34

bay=3  d3ye0 b3=3.5 dgge0 To1=47.76  yged6.36
(3) Dbgy=3.5 dpy=-3 bpg=3 dog=3

byg=3 dyy=7 byge1.5 4,;._1 Xcq=56.48 X.2=59.34

by=3  dgy=12  by3ed.5 dyge-13  Te1=51.53  ycg=50.37
(4) bpy=S  doy=-2 bgge3.$ -2

bxx-a 411-4 513'3 :2;._3 'cl'ss .95 Icz-6°. 19

byy=é dgg=—4 bag=$ dgy=—4t Yc1=47.73 Ycz=47.09
(5) bpy=1s  dgy=-2 bozeid  dgge-3

byy=3 dyy=3 byz=2 dl;’“‘ Xe1=56.98 Xog=58.58

byy=i0  dpy=—4 byg=9 dyz=—t Yc1=48.15 Yo3=46.07
6) %1-3. s d°1.—3 boz.a -3

byy=-2  dyy=3 byg=1.5 :2;.4 Xq=56.52 Xo3=59.27

byy=3  dgy=—t b33=3.5 dgge—t Yo1=47.94  yogmd6.54
(7) bpy=d.5 dgy=0 bggz=3 «0

byge-2  dyy=0 byg=-1.5 :2;.0 X1=56.52 Xo3e59.27

bzy=3  dzy=0 by3=3.5  dj3e0 Yc1=47.78  yogmd6. 54
(8) bpy=3.5 dgy=3 bpg=3 dog=3

byg=-2  dyy=-7 byg=-1.5 4,;._1 Xq=56.52 Xe3=59.27

bji=3  d3q=-12  byged.5 dgget13  Te1=48.57  ycma7.37
(9) bpy=$ dpg=-3 bga=3.5 dgg=—2

byy=3  dyy=3 byge-2 41;-4 Xcy=55.97 Xcg=60.15

bzy=6 day=—4 bag=5 dgg=—4 Yc1=47.57 Yog=46.91
(10) bgy=15  dgye-3 bpz=14 -2

byy=3  dyy=3 byg=-2 :2;-4 Xc1=57.01 Xc3=58.53

ba1=10  dy=4 baosd dzoe4 Yca=48.11 Yc3°46.01
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Figure Captions

Figure 1. Example of an individualized study system

Figure 2. A system of one selection and one mastery decision

Figure 3. Example of a 1linear utility function for a

~selection-mastery decision (bjj > 0)




test

ERIC

E: [Aruiroe poviisa oy mc

treatment

treatment i

criterion

treatment ) |

o) |
[y




test

reject

treatment




e 2
pEE |

yn T

3

-7



RR-87-1
RR-87-2
RR-87-3

RR-87—4

RR-87-5
RR-87-6

RR-87-7

RR-87-8

RR-87-9

RR-87-10

RR-88-1
RR-88-2

RR-88-3

RR-88—4

RR-88-5

RR-88—6

R. Engelen, Semiparametric estimation in the Rasch model
W.J. van der Linden (Ed.), IRT-based test construction
R. Engelen, P. Thommassen, & W. Vervaat, Ignatov’s theorem: A

new and short proof

E. van der Burg, & J. de Leeuw, Use of the multinomial
Jackknife and bootstrap in generalized nonlinear canonical
correlation analysis

H. Kelderman, Estimeting a quasi-loglinear models for the
Rasch table if the number of items is large

R. Engelen, A review of different estimation procedures in
the Rasch model

D.L. Knol & J.M.F. ten Berge, Least-squares approximation of
an Improper by a proper correlation matrix using a semi-
infinite convex program

E. van der Burg & J. de Leeuw, Nonlinear canonical
correlation analysis with k sets of variables

W.J. van der Linden, Applications of decision theory to test-
based decision making

W.J. van der Linden & E. Boekkooi-Timminga, A maximin model
for test design with practical constraints

E. van der Burg & J. de Leeuw. Nonlinear redundancy analysis

W.. van der Linder & J.J. Adema, Algorithmic test design
using classical item parameters

E. Boekkooi-Timminga, A cluster-based method for tes.
construction

J.J. Adema, A note on solving large-scale zero-one
programming problems

W.J. van der Linden, Optimizing incomplete sample designs for
item response model parameters

H.J. Vos, The use of decision theory in the Minnesota

Adaptive Instructional System

o4




RR-88-7

RR-88-8

R-88-9

RR-88-10

RR-88-11

RR--88-12

RR--88-13

RR-88-14
RR-88-15

ERIC

Aruitoxt provided by Eic:

J.H.A.N. Rikers, Towards an authoring system for item
construction

R.J.H. Engelen, W.J. van der Linden, & S.J. Oosterloo, Item
information in the Rasci. model

W.J. van der Linden & T.J.H.M. Eggen, The Rasch model as a
model for pailred comparisons with an individual tie parameter
H. Kelderman & G. Macready, Loglinear-latent-class models for
detecting item bias

D.L. Knol & M.P.F. Berger, Empirical comparison between
factor analysis and item response models

E. van der Burg & G. Dijksterhuis, Nonlinear canonica.
correlation analysis of multiway data

J. Kogut, Asymptotic distribution of an IRT person fit index

J.J. Adema, The construction of two-stage tests

K.J. Vos, Simultaneous optimization of decisions using a

linear utility function

Research Reports can be nbtained at cos.s from Bibliotheek,
Department of Education, " iversity of Twente, P.O. Box 217,
7500 AE Enschede, The Nei rlands.




ERIC

Aruitoxt provided by Eic:

m.p n; of . .
JCATION
A publication by

the Department of Education .
of the University of Twente




